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The Casualty Actuarial Society is committed to adhering strictly 
to the letter and spirit of the antitrust laws.  Seminars conducted 
under the auspices of the CAS are designed solely to provide a 
forum for the expression of various points of view on topics 
described in the programs or agendas for such meetings.

Under no circumstances shall CAS seminars be used as a 
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Portfolio Pricing: Five Simplifying Assumptions and 
One Objective 

1. One-period 
model

2. No existing 
business 3. No taxes

4. No 
investment 

income

5. No expenses 
(handled 

separately) 

Load loss cost 
for risk

Caveat: Everything presented is true most of the time, nothing is true all the time.
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Pricing Functional: The Idea

Stand-alone risk  Premium

X  ρ(X)

 Cat model
 Casualty simulation model
 Parametric distribution 

X = random variable of outcomes
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Pricing Functional: Desirable Properties
 Consistent with prices in a competitive market

1. Monotone: X ≤ Y implies ρ(X) ≤ ρ(Y)

2. Respects diversification: ρ(X + Y) ≤ ρ(X) + ρ(Y)

3. But...no credit when no diversification
– If outcomes X and Y imply same event order, then ρ(X + Y) = ρ(X) + ρ(Y)

4. ρ(X) only depends on the distribution of X

 Jargon: 2 = sub-additive, 3 = comonotonic additive, 4 = law invariant (SCALI)
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SCALI Properties Define a Spectral Risk Measure (SRM)
 SRMs have four different representations of ρ(X)

1. Weighted average of VaRs
2. Weighted average of TVaRs
3. Worst over a set of probability scenarios
4. Distorted expected value 

 Distorted expected value: there exists an increasing, concave distortion 
function g so that 

where SX(x) = Pr(X>x) is the survival function of X

 Expectation representation shows SRMs have a natural allocation
E[Xi g'(S(X))], which also equals the marginal allocation
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Distortion Function g Prices Bernoulli 0/1 Risk

Source: Pricing Insurance Risk, Mildenhall & Major (2022), Wiley
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Spectral Risk Measure Portfolio Pricing

Source: Pricing Insurance Risk, Mildenhall & Major (2022), Wiley
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Case Study: Financial Model
 InsCo. has only two sources of assets

– Policyholders pay premium by buying policies at InsCo’s asking price
– Investors contribute capital by buying residual value at their bid price  

 At time 0
– Premium P
– Capital Q
– Assets a = P + Q
– Asset amount a is set by regulator/rating agency 

 At time 1
– Claims X revealed
– Policyholder payments X ∧ a = min(X, a)
– Investor return (a – X)+ = max(0, a – X)
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Case Study: Cat/NonCat Stochastic Model
 NonCat: gamma 

– mean 80, cv 0.15

 Cat: lognormal 
– mean 20, cv 1.0

 Independent

 Total
– mean 100, cv 0.233

 Asset requirement
– VaR 99.9% = 267.2
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Example g, Shape of g and Properties of ρ

Source: Pricing Insurance Risk, Mildenhall & Major (2022), Wiley
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Shape of g and Properties of ρ

Source: Pricing Insurance Risk, Mildenhall & Major (2022), Wiley
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Shape of g and Properties of ρ

Source: Pricing Insurance Risk, Mildenhall & Major (2022), Wiley
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Shape of g and Properties of ρ
1. If g is steep near s=0 it has 

expensive tail-risk capital
– CCoC > PH > Wang > Dual > TVaR

2. If g is flat near s=1 it has 
expensive body-risk capital

– Opposite order

3. CCoC vertical at 0: has the most 
expensive tail-risk and cheapest 
body-risk capital

4. TVaR flat at 1: has the most 
expensive body-risk and 
cheapest tail-risk capital

See “Similar Risks have Similar Prices”, IME 2022 for more, https://authors.elsevier.com/a/1e%7EbLc7vgdMA6

https://authors.elsevier.com/a/1e%7EbLc7vgdMA6
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Stand-Alone Pricing: Cat low 30s, NonCat upper 80s

Source: Pricing Insurance Risk, Mildenhall & Major (2022), Wiley
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Allocated Pricing using the Natural Allocation 

Source: Pricing Insurance Risk, Mildenhall & Major (2022), Wiley [CORRECTED]

Stand-Alone
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Why Do the Allocations Make Sense?

 Cat: thick tail, narrow body

 NonCat: thin tail, broad body 

Density

Source: Pricing Insurance Risk, Mildenhall & Major (2022), Wiley
Loss
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Roadmap
Model, Example

Efficient Frontier,
Layers

Constant Cost of Capital
Layers

Spectral Risk Measure
Layers

Constant Cost of Capital
Lines of Business

Spectral Risk Measure
Lines of Business

Conclusions

Past

Present

Future
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Adding Reinsurance to the Financial Model

 Three sources of assets
 Policyholders PRe

 Investors Qn

 Reinsurance Xc (contingent ceded losses)

 Gross loss X = Xn + Xc

 Cost of reinsurance (ceded premium) π

 PRe = Pn + π, net premium plus reinsurance premium

 Capital requirement
 an = Pn + Qn, net asset requirement
 Δa = a – an, capital benefit from reinsurance 
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Example Cat/NonCat Portfolio

Non-cat: Gamma mean 80, cv 0.15

Cat: Lognormal mean 20, cv 1.0

 Independent

 Total mean 100, cv 0.233

Asset requirement
 VaR 99.8% = 237.5
 Target return 6%
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Decisions Past: Multiple Criteria

 Goals:

 Maximize net recovery  E[Xc] – π

 Maximize capital savings Δa
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 Basic logic:
 Policyholder premiums P = EL + M
 Investor capital Q = a – P
 Expected return ι = M / Q

 Conclusion
 P = EL + ι (a – P)
 = (EL + ι a) / (1 + ι)
 = v EL  +  d a

 Note 
 v = 1 / (1 + ι) is the risk discount factor 
 d = ι / (1 + ι) = ιv is the rate of risk discount
 v + d = 1

Decisions Present: The Portfolio Cost of Capital 

Source: Pricing Insurance Risk, Mildenhall & Major (2022), Wiley
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Impact of Reinsurance on Premium

 Funded with capital only
P = v E[X ∧ a] + d a

 Funded with capital and reinsurance
PRe = v E[Xn ∧ an] + d an + π

 Difference in funding costs P – PRe
= v(E[X ∧ a] – E[Xn ∧ an]) + d Δa – π
≈  v E[Xc] + d Δa – π
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Evaluating Lines of Business

X = wcat Xcat + wnc Xnc yeah, yeah, not really

wcat = wnc = 1
a = VaR0.998 (X)
∂a/∂wcat = E[Xcat | X = a]         marginal asset = co-VaR

P = v EL + d a
M = P - EL
∂M/∂wcat = d (E[Xcat | X = a] - E[Xcat])
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Co-VaR, a.k.a Kappa Function

a = 
237.6

152.9

84.7

Cat
loss in tail much 
greater than 
expected: 20

Noncat 
loss in tail 
approx. equal 
expected: 80

Source: Pricing Insurance Risk, Mildenhall & Major (2022), Wiley
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Let’s apply to our LOBs!

LOB

Con-
ditional
EL

Uncon-
ditional
EL

Shared
Liability

Allocation by
CCoC Method

Profit
Margin Share

Non-
Cat

84.7 80 4.7 0.26 3%

Cat 152.9 20 132.9 7.53 97%

Total 237.6 100 137.6 7.79 100%
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Is this reasonable? Many people don’t think so.

LOB EL

CCoC

Margin

90th

%ile σ2

Non-
Cat

80 0.26

3%

+16

62%

144

26%

Cat 20 7.53

97%

+21

81%

400

74%

Total 100 7.79

100%

+26

100%

544

100%
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What’s Going On Here

P = v EL  +  d a

Agent is
 Risk neutral v of the time: P=EL
 Doom and gloom d of the time: P=a

CCoC only sensitive to mean + extreme



38

A Deeper Critique of CCoC

Capital has a range of costs
 Bonds: credit yield curve
 Cat bonds at different attachments

 “One return to rule them all” ???
 Same ROE
 All LOBs
 gross & net
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Decisions Future? Spectral Risk Measures
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Our Model Distortion Function vs CCoC
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Piecewise Linear g(s)

g(s)sRating

1.01.01
0.5699950.396580CCC
0.0507000.024000BB
0.0238000.004700BBB
0.0128000.001300A
0.0067000.000400AAA

0.00.00

So you can reproduce this example on your own.



43

Applying SRM to LOBs

 Simulated scenarios sorted by portfolio loss

 Every scenario j has
 Probability pj

 Exceedance probability sj

 Distorted EP g(sj)
 Distorted probability ∆g(sj)

 Expected loss for LOB i is ELi = Σj Xi, j pj

 Technical Premium ρi = Σj Xi, j ∆g(sj)

 Margin  = ρi − ELi

Videos!
go.guycarp.com/

cas2018
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SRM Conclusions about LOBs

LOB EL

CCoC Method SRM Method

Margin Share Margin Share
Non-
Cat

80 0.26 3% 2.00 26%

Cat 20 7.53 97% 5.79 74%

Total 100 7.79 100% 7. 100%
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Applying SRM to Reinsurance

 Economic Value Added
 ρ(Xgross) – ρ(Xnet)
 “A/B method”

 Approximation

 Σj Xceded, j ∆g(sj)
 “Allocate gross”
 Technically, “linear allocation” DnρX(Xc)
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50x70 1.98 0.15
50x50 1.95 0.34
40x50 1.57 0.35
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Takeaways 

 Past: Efficient frontiers … meh

 Present: CCoC … extreme

 Future: SRMs easy[1]

a. Variable capital cost
b. Risk-adjusted probabilities

[1] Terms and conditions apply
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